

Graph-convolutional neural networks

Diego Valsesia

Télécom ParisTech 7/3/2019

Obligatory Deep Learning Preamble

ALPHAGO

Forbes

3 Reasons To Believe The Singularity Is Near

Obligatory Deep Learning Preamble

1989: training a convolutional neural network with backprop

Handwritten Digit Recognition with a Back-Propagation Network

Y. Le Cun, B. Boser, J. S. Denker, D. Henderson,
R. E. Howard, W. Hubbard, and L. D. Jackel
AT&T Bell Laboratories, Holmdel, N. J. 07733

Obligatory Deep Learning Preamble

More computational power

• 2010s:

• More data

New techniques to train deeper networks

Convolutional Neural Networks

- Very successful
- Workhorse of vision problems

Denoising Captioning Restoration Segmentation ObjectDetection Superresolution Classification

Convolutional Neural Networks

Images have pixels nicely aligned on a grid

Graph Data

Example: link prediction

- Social network graph
- Node = Person
 - Feature vector on node describes the person
- Edge = Link between two persons

- Can we predict if two people should be linked even if they currently are not?
 - Recommending friends, movies, topics, …

Example: link prediction

Predict interactions among proteins and drugs [1]

[1]: Marinka Zitnik, Monica Agrawal and Jure Leskovec, "Modeling polypharmacy side effects with graph convolutional networks", Bioinformatics, 2018

Graph Neural Networks?

11

Convolution

Convolutional neural networks:

- reduce the number of parameters (less overfitting)
- encode prior knowledge in the model

Locality: short-range correlations

Compositionality: hierarchical structures

Stationarity: shift equivariance

 $y_1(n$

 $x_1(n)$

Graph Signal Processing (GSP)

- Signals defined over an irregular domain
- GSP extends signal processing
- Issues:
 - Ordering is arbitrary
 - Translation?
 - Downsampling?
 - Upsampling?
 - Filtering?

Graph Signal Processing (GSP)

How to define graph convolution?

(no single universally-accepted definition yet)

1. Spectral approach:

• define a "Fourier" transform, work in frequency domain

2. Spatial approach:

• define a way to aggregate data from neighboring nodes

Graph Fourier Transform

- How to define a *"frequency"* notion?
- Graph Fourier Transform as eigenvectors of graph Laplacian
 Analogy with classical Fourier transform (eigenfunctions of ∇²)

Spectral Graph Convolution?

Classic signal processing

$$x(t) * h(t) = \int x(t-\tau)h(\tau)d\tau$$

convolution in time domain

 $F[x(t) * h(t)] = F[x(t)] \cdot F[h(t)]$

convolution in frequency domain

Graph signal processing

Spectral Graph Convolution

Spectral approach

17

• convolution as product in frequency domain

Spatial Graph Convolution

Spectral approach issues:

- High computational cost: eigenvectors required
- Not localized in vertex domain

• Approximation:

- Fast Graph Filters^[1]
- Polynomials of graph Laplacian $g(L) = \Phi g(\Lambda) \Phi^{H}$

$$x_f = g(L)x = \sum_{k=0}^{K-1} \theta_k L^k x$$

- Recursive implementations (Chebyshev polynomials, Lanczos method)
 O(K|E|) ≪ O(|V|²)
- Graph-dependent: learned filter parameters do not generalize to different graphs

[1]: Defferrard M., Bresson X., Vandergheynst P., "Convolutional neural networks on graphs with fast localized spectral filtering", NIPS 2016

Spatial Graph Convolution

Spatial local aggregations^[2]

- Weighted average of neighbourhood data
- Weights are functions of edge labels
- Localization and weight reuse by design

$$x_i = \frac{1}{|\mathcal{N}(i)|} \sum_{j \in \mathcal{N}(i)} \theta_{ji} x_j$$

$$\theta_{ji} = F(L(i, j))$$
, where $(i, j) \in E$

[2]: Simonovsky M., Komodakis N., *"Dynamic edge-conditioned filters in convolutional neural networks on graphs"*, CVPR 2017

Reduces spatial size of data

Pooling in CNNs

- Builds invariances into the model
 - Max pooling = local translation invariance

12	20	30	0	
8	12	2	0	2×2 Max-Pool
34	70	37	4	
112	100	25	12	

20

112

30

37

Pooling in Graph CNNs

• Graph coarsening:

- algorithms to reduce the number of nodes and edges...
- ...while approximately preserving global structure
- (no complete theory of what information these algorithms actually preserve/destroy)

Graph-convolutional neural nets

 (Y_1)

 (Y_4)

- Use neural networks to process data defined on graph
- Graph signal processing operations as layers
 - Graph convolution
 - Graph coarsening
- Applications:
 - Supervised: classification^[3] of the entire graph signal
 - Semi-supervised:
 - Node classification^[4]
 - Link prediction^[5]
 - Unsupervised: generative models ^[6]
 - [3]: Khasanova R., Frossard P., "Graph-based isometry invariant representation learning", ICML 2017 [4]: Kipf T. N., Welling M., "Semi-Supervised Classification with Graph Convolutional Networks", ICLR 2017 [5]: Schlichtkrull M., Kipf T., Bloem P., van den Berg R., Titov I., Welling M., "Modeling relational data with graph convolutional networks", ESWC 2018
 - [6]: Valsesia D., Fracastoro G., Magli E., "Learning Localized Generative Models for 3D Point Clouds via Graph Convolution", ICLR 2019

"bus"

Lidar scans classification

[2]: Simonovsky M., Komodakis N., "Dynamic edge-conditioned filters in convolutional neural networks on graphs", CVPR 2017

Point clouds with color/intensity value: predict the object class

{ $(x_0, y_0, z_0, R_0, G_0, B_0)$, $(x_1, y_1, z_1, R_1, G_1, B_1)$, ... }

- Before graph convolution: 3D space partition into voxels, quantization and 3D convolution
- Local aggregations
 Edge labels
 =
 coordinate differences
 between neighbours
 (fixed radius)

 $L_{ij} = (x_i - x_j, y_i - y_j, z_i - z_j)$

Lidar scans classification

[2]: Simonovsky M., Komodakis N., "Dynamic edge-conditioned filters in convolutional neural networks on graphs", CVPR 2017

Model	Mean F1		
Triangle+SVM [9]	67.1		
GFH+SVM [7]	71.0		
VoxNet [26]	73.0		
ORION [1]	77.8		
ECC 2ρ	74.4		
ECC 1.5ρ	76.9		
ECC	78.4		

Semi-supervised node classification

[4]: Kipf T. N., Welling M., "Semi-Supervised Classification with Graph Convolutional Networks", ICLR 2017

- Large graph: some nodes are labelled
- Predict the missing labels

 (label distribution depends on graph topology)
- Convolution: 1st order approximation of fast graph filters, 2 hidden layers

$$Z = f(X, A) = \operatorname{softmax}\left(\hat{A} \operatorname{ReLU}\left(\hat{A}XW^{(0)}\right)W^{(1)}\right)$$

LP [32] 45.368.0 DeepWalk [22] 43.267.2ICA [18] 69.175.1**Classification accuracy:** Planetoid* [29] 75.7 (13s) 64.7 (26s) Improves over methods not using **GCN** (this paper) **70.3** (7s) **81.5** (4s) convolutional neural nets GCN (rand. splits) 67.9 ± 0.5 80.1 ± 0.5

Method

ManiReg 3

SemiEmb [28]

Citeseer

60.1

59.6

Cora

59.5

59.0

Citation networks

Pubmed

70.7

71.1

63.0

65.3

73.9

77.2 (25s)

79.0 (38s)

 78.9 ± 0.7

25

POLITECNICO DI TORINO

Semi-supervised node classification

[4]: Kipf T. N., Welling M., "Semi-Supervised Classification with Graph Convolutional Networks", ICLR 2017

- Large graph: some nodes are labelled
- Predict the missing labels

 (label distribution depends on graph topology)
- Convolution: 1st order approximation of fast graph filters, 2 hidden layers

$$Z = f(X, A) = \operatorname{softmax}\left(\hat{A} \operatorname{ReLU}\left(\hat{A}XW^{(0)}\right)W^{(1)}\right)$$

LP [32] 45.368.0 DeepWalk [22] 43.267.2ICA [18] 69.175.1Classification accuracy: Planetoid* [29] 75.7 (13s) 64.7 (26s) Improves over methods not using **GCN** (this paper) **70.3** (7s) **81.5** (4s) convolutional neural nets GCN (rand. splits) 67.9 ± 0.5 80.1 ± 0.5

Method

ManiReg 3

SemiEmb [28]

Citeseer

60.1

59.6

Cora

59.5

59.0

Citation networks

Pubmed

70.7

71.1

63.0

65.3

73.9

77.2 (25s)

79.0 (38s)

 78.9 ± 0.7

26

Point cloud generation

[6]: Valsesia D., Fracastoro G., Magli E., "Learning Localized Generative Models for 3D Point Clouds via Graph Convolution", ICLR 2019
[7]: Valsesia D., Fracastoro G., Magli E., "Learning Localized Representations of Point Clouds with Graph-Convolutional Generative Adversarial Networks", journal version, under review

- Generate point clouds
- Exploit graph-convolutional operations in a Generative Adversarial Network

- Generative model:
 - learns the (complicated) distribution of the data
- Why would I do that?
 - Generation of new samples (e.g. to train supervised models)
 - Regularization of inverse problems
 - Learning powerful representations of the data

GAN

29

Goodfellow, Ian, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. "*Generative adversarial nets*", NIPS 2014

- Two competing networks:
 - Generator: transforms a random latent vector into a «fake» sample
 - Discriminator: guesses if its input is «real» or «fake»

$$\min_{G} \max_{D} E_{x \sim P_{r}} \left[\log(D(x)) \right] + E_{z \sim P_{z}} \left[\log\left(1 - D(G(z))\right) \right]$$

Very impressive results for image generation^[1]

- Hard to train, unstable loss
 - Recent improvements (e.g., WGANs^[2], progressive growing^[3])

Brock, A., Donahue, J., Simonyan K., *"Large Scale GAN Training for High Fidelity Natural Image Synthesis"*, ICLR 2019
 Arjovsky, M., Chintala, S., & Bottou, L., *"Wasserstein GAN"*. arXiv preprint arXiv:1701.07875.
 Karras, T., Aila, T., Laine, S. and Lehtinen, J., *"Progressive growing of GANs for improved quality, stability, and variation"*. arXiv preprint arXiv:1710.10196.

Point cloud generation

 (x_0, y_0, z_0)

(x₁, y₁, z₁)

 (x_2, y_2, z_2)

Why generating points clouds is hard?

- Unordered sets of points
 - Any permutation is still the same point cloud
- How to exploit spatial correlation?
 - Fully-connected G, 1x1 conv D could generate PCs but no feature localization \rightarrow no spatial similarity is exploited
 - Voxels encapsulating points: reuse classic 3D conv \rightarrow approximation

32

Why using graph convolution with GANs is hard? (at the generator)

- Graph convolution requires a graph to do the convolution
- How can I define a graph of neighboring points if the coordinates of the neighbors are the very output of the generator?

Point cloud generation

- Each hidden layers has a feature vector per point
- Build a nearest-neighbor graph from hidden feature vectors

 Gconv is spatial-aggregation graph convolution by Simonovsky et al. : edge labels = differences between feature vectors

$$\mathbf{H}_{i}^{l+1} = \sigma \left(\sum_{j \in \mathcal{N}_{i}^{l}} \frac{F_{\mathbf{w}^{l}}^{l} \left(\mathbf{H}_{j}^{l} - \mathbf{H}_{i}^{l} \right) \mathbf{H}_{j}^{l}}{|\mathcal{N}_{i}^{l}|} + \mathbf{H}_{i}^{l} \mathbf{W}^{l} + \mathbf{b}^{l} \right)$$

Point cloud generation - Features

- Hidden features are localized
 - They exploit local similarities

Point cloud generation - Features

- Hidden features are a graph embedding of the output
 - They can predict the output geometry

Point cloud generation – Upsampling layer

- Upsampling: opposite of coarsening/pooling
- We want to increase the number of points through the layers
 - Computational efficiency
 - Exploit multi-resolution prior
- How to do that? In CNNs just place zeros on the grid then filter

Point cloud generation – Upsampling layer

Upsampling as aggregation

$$\tilde{\mathbf{H}}_{i}^{l} = \sigma \left(\sum_{j \in \mathcal{N}_{i}^{l}} \frac{\operatorname{diag} \left(F_{\tilde{\mathbf{w}}^{l}}^{up,l} \left(\mathbf{H}_{j}^{l} - \mathbf{H}_{i}^{l} \right) \right) \mathbf{H}_{j}^{l}}{|\mathcal{N}_{i}^{l}|} + \mathbf{H}_{i}^{l} \mathbf{\Gamma}^{l} + \mathbf{b}^{l} \right)$$

 Learns to exploit self-similarity (new neighborhood is similar to old neighborhood but somewhere else)

Point cloud generation – Results

 $G(\mathbf{z}_B)$

• Generated point clouds

 $G(\mathbf{z}_A)$

 $G((1-\alpha)\mathbf{z}_A + \alpha \mathbf{z}_B)$

Point cloud generation – Results

Class	Model	JSD	MMD-CD	MMD-EMD	COV-CD	COV-EMD
	r-GAN-dense	0.238	0.0029	0.136	33	13
	r-GAN-conv	0.517	0.0030	0.223	23	4
Chair	Proposed (no up.)	0.119	0.0033	0.104	26	20
	Proposed (aggr. up.)	0.100	0.0029	0.097	30	26
	Proposed (prob. up.)	0.104	0.0034	0.106	39	31
	r-GAN-dense	0.221	0.0020	0.146	32	12
	r-GAN-conv	0.293	0.0025	0.110	21	12
Sofa	Proposed (no up.)	0.095	0.0024	0.094	25	19
	Proposed (aggr. up.)	0.063	0.0020	0.083	39	24
	Proposed (prob. up.)	0.119	0.0022	0.113	32	19
	r-GAN-dense	0.182	0.0009	0.094	31	9
	r-GAN-conv	0.350	0.0008	0.101	26	7
Airplane	Proposed (no up.)	0.164	0.0010	0.102	24	13
-	Proposed (aggr. up.)	0.083	0.0008	0.071	31	14
	Proposed (prob. up.)	0.095	0.0010	0.075	34	19
	r-GAN-dense	0.217	0.0031	0.139	33	15
	r-GAN-conv	0.359	0.0031	0.247	29	4
Table	Proposed (no up.)	0.171	0.0045	0.123	24	18
	Proposed (aggr. up.)	0.148	0.0035	0.131	36	29
	Proposed (prob. up.)	0.167	0.0037	0.124	33	34

Graph-convolutional Image Denoising

Denoising: classic problem in image processing
Important in many applications (not just to get pretty pictures)

Graph-convolutional Image Denoising

- Model-based methods:
 - Non-local self-similarity is key to good performance
 - NLM, BM3D, ...
- Deep Learning:
 - CNNs only create hierarchies of local features
 - Receptive field expands radially from local patch

Need to combine non-locality and neural networks!

POLITECNICO DI TORINO

Open Issues & Future

- What is graph convolution? Is there a better definition?
- More computationally-efficient definitions
- More widespread availability inside Tensorflow, PyTorch, ...
- Non-local models based on graphs are appearing in networks for many problems

Thank You!