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Obligatory Deep Learning Preamble
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Obligatory Deep Learning Preamble

• 1989: training a convolutional neural network with backprop
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Obligatory Deep Learning Preamble

• 2010s:
• More data

• More computational power

• New techniques to train deeper networks 
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Convolutional Neural Networks

• Very successful
• Workhorse of vision problems
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Convolutional Neural Networks
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• Images have pixels nicely aligned on a grid



Graphs

7



Graph Data
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Brain functional networks Traffic networks Sensor networks

Point clouds Social networks Images!



Example: link prediction

• Social network graph
• Node = Person
• Feature vector on node describes the person

• Edge = Link between two persons

• Can we predict if two people should be linked even if they
currently are not? 
• Recommending friends, movies, topics, …

9



Example: link prediction

• Predict interactions among proteins and drugs [1]
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[1]: Marinka Zitnik, Monica Agrawal and Jure Leskovec, “Modeling polypharmacy side effects with graph 
convolutional networks”, Bioinformatics, 2018



Graph Neural Networks?
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Convolution

• For signals on grids, convolutions impose 
prior knowledge of certain signal properties:

• Stationarity: shift equivariance

• Locality: short-range correlations

• Compositionality: hierarchical structures

• Convolutional neural networks:
• reduce the number of parameters (less overfitting)
• encode prior knowledge in the model
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Graph Signal Processing (GSP)

 Signals defined over an irregular domain
GSP extends signal processing
 Issues:

 Ordering is arbitrary
 Translation?
 Downsampling?
 Upsampling?
 Filtering?
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𝐺𝐺 = 𝑉𝑉,𝐸𝐸

𝑥𝑥 ∶ 𝑉𝑉 → ℝ𝑑𝑑



Graph Signal Processing (GSP)

How to define graph convolution?
(no single universally-accepted definition yet)

1. Spectral approach: 
• define a “Fourier” transform, work in frequency domain

2. Spatial approach:
• define a way to aggregate data from neighboring nodes 
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Graph Fourier Transform

How to define a“frequency” notion?
Graph Fourier Transform as eigenvectors of graph Laplacian

 Analogy with classical Fourier transform (eigenfunctions of ∇2) 
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𝐿𝐿 = 𝐷𝐷 − 𝐴𝐴
𝐿𝐿 = ΦΛΦ𝐻𝐻

�𝑥𝑥 = Φ𝐻𝐻𝑥𝑥

Graph Laplacian

Graph Fourier Transform

𝐷𝐷 = 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(∑𝑖𝑖≠𝑗𝑗 𝑤𝑤𝑖𝑖𝑗𝑗) : degree matrix

𝐴𝐴: adjacency matrix



Spectral Graph Convolution?
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Classic signal processing

convolution in
time domain

convolution in 
frequency domain

Graph signal processing

?

?

( ) ( ) ( ) ( )x t h t x t h dτ τ τ∗ = −∫

[ ( ) ( )] [ ( )] [ ( )]F x t h t F x t F h t∗ = ⋅



Spectral Graph Convolution

• Spectral approach
• convolution as product in frequency domain
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𝑥𝑥𝑓𝑓 = Φ𝐻𝐻Φ𝐻𝐻𝑥𝑥 Original signalFiltered signal

Inverse 
Graph 
Fourier 
Transform

Forward 
Graph 
Fourier 
Transform

Filter

ℎ1 0 ⋯ 0 0
0 ℎ2 ⋯ 0 0
⋮ ⋮ ⋱ ⋮ ⋮
0 0 ⋯ ℎ𝑁𝑁−1 0
0 0 ⋯ 0 ℎ𝑁𝑁



Spatial Graph Convolution

• Spectral approach issues:
• High computational cost: eigenvectors required
• Not localized in vertex domain
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• Approximation:
• Fast Graph Filters[1]

• Polynomials of graph Laplacian 𝑑𝑑 𝐿𝐿 = Φ𝑑𝑑 Λ ΦH

• Smoothness in frequency domain Localization in vertex domain

[1]: Defferrard M., Bresson X., Vandergheynst P., “Convolutional neural networks on graphs with fast 
localized spectral filtering”, NIPS 2016 

𝑥𝑥𝑓𝑓 = 𝑑𝑑 𝐿𝐿 𝑥𝑥 = �

𝑘𝑘=0

𝐾𝐾−1

𝜃𝜃𝑘𝑘𝐿𝐿
𝑘𝑘𝑥𝑥

• Recursive implementations 
(Chebyshev polynomials, Lanczos method)

• 𝑂𝑂 𝐾𝐾 𝐸𝐸 ≪ 𝑂𝑂( 𝑉𝑉 2)

• Graph-dependent: learned filter parameters do not generalize to different graphs



Spatial Graph Convolution

• Spatial local aggregations[2]

• Weighted average of neighbourhood data
• Weights are functions of edge labels
• Localization and weight reuse by design
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[2]: Simonovsky M., Komodakis N., “Dynamic edge-conditioned filters in convolutional neural networks 
on graphs”, CVPR 2017

𝑥𝑥𝑖𝑖 =
1

|𝒩𝒩(𝑑𝑑)|
�

𝑗𝑗∈𝒩𝒩(𝑖𝑖)

𝜃𝜃𝑗𝑗𝑖𝑖𝑥𝑥𝑗𝑗

𝜃𝜃𝑗𝑗𝑖𝑖 = 𝐹𝐹(𝐿𝐿(𝑑𝑑, 𝑗𝑗)), where 𝑑𝑑, 𝑗𝑗 ∈ 𝐸𝐸



Pooling in CNNs

• Reduces spatial size of data
• Builds invariances into the model
• Max pooling = local translation invariance
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Pooling in Graph CNNs

• Graph coarsening:
• algorithms to reduce the number of nodes and edges…
• …while approximately preserving global structure
• (no complete theory of what information these algorithms actually

preserve/destroy )
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Graph-convolutional neural nets
• Use neural networks to process data defined on graph

• Graph signal processing operations as layers
• Graph convolution
• Graph coarsening
• …

• Applications:
• Supervised: classification[3] of the entire graph signal
• Semi-supervised:

• Node classification[4]

• Link prediction[5]

• Unsupervised: generative models [6]
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[3]: Khasanova R., Frossard P., “Graph-based isometry invariant representation learning”, ICML 2017
[4]: Kipf T. N., Welling M., “Semi-Supervised Classification with Graph Convolutional Networks”, ICLR 2017
[5]: Schlichtkrull M., Kipf T., Bloem P., van den Berg R., Titov I., Welling M., “Modeling relational data with 
graph convolutional networks”, ESWC 2018
[6]: Valsesia D., Fracastoro G., Magli E., “Learning Localized Generative Models for 3D Point Clouds via Graph 
Convolution”, ICLR 2019

“bus”



Lidar scans classification

• Point clouds with color/intensity value: predict the object class 
{ (x0, y0, z0, R0, G0, B0), (x1, y1, z1, R1, G1, B1), … }

• Before graph convolution: 3D space partition into voxels, quantization and 
3D convolution
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[2]: Simonovsky M., Komodakis N., “Dynamic edge-conditioned filters in convolutional neural networks on 
graphs”, CVPR 2017

• Local aggregations
Edge labels 

= 
coordinate differences 
between neighbours 

(fixed radius)

Dense network 
computing 

aggregation 
weights from 
edge labels

Lij = (xi- xj, yi - yj, zi- zj)



Lidar scans classification
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[2]: Simonovsky M., Komodakis N., “Dynamic edge-conditioned filters in convolutional neural networks on 
graphs”, CVPR 2017



Semi-supervised node classification

• Large graph: some nodes are labelled
• Predict the missing labels 

(label distribution depends on graph topology)
• Convolution: 1st order approximation

of fast graph filters, 2 hidden layers
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[4]: Kipf T. N., Welling M., “Semi-Supervised Classification with Graph Convolutional Networks”, ICLR 2017

Citation networks

Classification accuracy:
Improves over methods not using 
convolutional neural nets



Semi-supervised node classification

• Large graph: some nodes are labelled
• Predict the missing labels 

(label distribution depends on graph topology)
• Convolution: 1st order approximation

of fast graph filters, 2 hidden layers
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[4]: Kipf T. N., Welling M., “Semi-Supervised Classification with Graph Convolutional Networks”, ICLR 2017

Citation networks

Classification accuracy:
Improves over methods not using 
convolutional neural nets



Point cloud generation

• Generate point clouds
• Exploit graph-convolutional operations in a 

Generative Adversarial Network
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[6]: Valsesia D., Fracastoro G., Magli E., “Learning Localized Generative Models for 3D Point Clouds via Graph 
Convolution”, ICLR 2019
[7]: Valsesia D., Fracastoro G., Magli E., “Learning Localized Representations of Point Clouds with Graph-
Convolutional Generative Adversarial Networks”, journal version, under review



GAN

• Generative model: 
• learns the (complicated) distribution of the data

• Why would I do that?
• Generation of new samples (e.g. to train supervised models)
• Regularization of inverse problems
• Learning powerful representations of the data
• …
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GAN

• Two competing networks:
• Generator: transforms a random latent vector into a «fake» sample
• Discriminator: guesses if its input is «real» or «fake»
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Goodfellow, Ian, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, 
and Yoshua Bengio. "Generative adversarial nets ", NIPS 2014



GAN

• Very impressive results for image generation[1]

• Hard to train, unstable loss
• Recent improvements (e.g., WGANs[2], progressive growing[3])
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[1]: Brock, A., Donahue, J., Simonyan K. , “Large Scale GAN Training for High Fidelity Natural Image Synthesis”, ICLR 2019
[2]: Arjovsky, M., Chintala, S., & Bottou, L., “Wasserstein GAN”. arXiv preprint arXiv:1701.07875.
[3]: Karras, T., Aila, T., Laine, S. and Lehtinen, J., “Progressive growing of GANs for improved quality, stability, and 
variation”. arXiv preprint arXiv:1710.10196.



Point cloud generation

Why generating points clouds is hard?

• Unordered sets of points
• Any permutation is still the same point cloud

• How to exploit spatial correlation?
• Fully-connected G, 1x1 conv D could generate PCs but no feature 

localization > no spatial similarity is exploited
• Voxels encapsulating points: reuse classic 3D conv > approximation
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(x0, y0, z0)
(x1, y1, z1)
(x2, y2, z2)

…



Point cloud generation

Why using graph convolution with GANs is hard?
(at the generator)

• Graph convolution requires a graph to do the convolution
• How can I define a graph of neighboring points if the 

coordinates of the neighbors are the very output of the 
generator?
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Point cloud generation
• Each hidden layers has a feature vector per point
• Build a nearest-neighbor graph from hidden feature vectors

• Gconv is spatial-aggregation graph convolution by Simonovsky
et al. : edge labels = differences between feature vectors
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Point cloud generation - Features

• Hidden features are localized
• They exploit local similarities

DENSE                 GCONV_0                GCONV_1              GCONV_2               GCONV_3                 OUTPUT
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Point cloud generation - Features

• Hidden features are a graph embedding of the output
• They can predict the output geometry
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Point cloud generation –
Upsampling layer
• Upsampling: opposite of coarsening/pooling
• We want to increase the number of points through the layers
• Computational efficiency
• Exploit multi-resolution prior

• How to do that? In CNNs just place zeros on the grid then filter
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Point cloud generation –
Upsampling layer
• Upsampling as aggregation

• Learns to exploit self-similarity (new neighborhood is similar to 
old neighborhood but somewhere else)
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Point cloud generation – Results
• Generated point clouds

• Latent space interpolation
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Point cloud generation – Results
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Graph-convolutional Image Denoising
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 Denoising: classic problem in image processing
 Important in many applications (not just to get pretty 

pictures)



Graph-convolutional Image Denoising
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 Model-based methods:
 Non-local self-similarity is key to good performance
 NLM, BM3D, …

 Deep Learning:
 CNNs only create hierarchies of local features
 Receptive field expands radially from local patch

Need to combine non-locality and neural networks!



Open Issues & Future

• What is graph convolution? Is there a better definition?
• More computationally-efficient definitions
• More widespread availability inside Tensorflow, PyTorch, …

• Non-local models based on graphs are appearing in networks 
for many problems
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Thank You!
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