Deep learning based image compression

Li Wang, Giuseppe Valenzise

What is Autoencoder ?

Autoencoder : $x_i = x_i'$

What is Autoencoder ?

- Encoder stage : map the input x to z $z = \delta(Wx + b)$
 - $\delta\,$: element-wise activation function
- Decoder stage : map z to reconstruction x'

 $x' = \delta'(W'z+b')$

Autoencoders are trained to minimise :

$$L(x, x') = ||x - x'||^2$$

What is Autoencoder ?

- Denoising autoencoder $X \xrightarrow[Corrupt data]{} \widetilde{X} \xrightarrow[Autoencoder]{} \widetilde{X}'$ $min L(x, \widetilde{X}')$
- Sparse autoencoder

Imposing sparse criterion on hidden units

Variational autoencoder

Use a stochastic gradient variational Bayes algorithm for training

Principal Component Analysis (PCA)

- Linear autoencoder
- One hidden layer
- Squared error loss

Deep Autoencoder

[Ballé et al. 2017]

GND : generalized divisive normalization

Simulation results [Ballé et al. 2017]

JPEG

R:0.950 MS-SSIM: 0.9909

R:0.102 MS-SSIM: 0.8123

JPEG2000

R:0.996 MS-SSIM: 0.9856

Proposed

R:0.654 MS-SSIM: 0.9878

R:0.082 MS-SSIM: 0.9133

R:0.093 MS-SSIM: 0.8638

[Theis et al. 2017]

Quantization : rounding to the nearest integer

Simulation results [Theis et al. 2017]

0.245626 bpp

0.249654 bpp

0.254415 bpp

[Agustsson et al. 2017]

Simulation results [Agustsson et al. 2017]

JPEG

JPEG 2000

Proposed

0.22bpp PSNR=19.77dB 0.2bpp PSNR=23,01dB 0.2bpp PSNR=23.88dB

Simulation results [Rippel et al. 2017]

0.0909bpp

0.0949bpp

JPEG 2000

0.0847bpp

0.0941bpp

Proposed

0.0840bpp

0.0928bpp

Basic tools: Recurrent Neural Networks (RNN)

[Goodfellow et al., Deep Learning, 2016]

RNN: the challenge of long-term dependencies

- RNNs are similar to dynamical systems
- Problem: propagation of gradients during learning
- Common solutions:
 - Resnet units (for vanishing gradients)
 - Clipping (for exploding gradients)
 - Long-short term memory units (LSTM): enable to store and forget the current state

[[]Goodfellow et al., Deep Learning, 2016]

Variable rate image compression with recurrent neural networks (Todorici et al. 2016)

- Variable rate is achieved using progressive encoding
 - Residuals are progressively encoded on top of previous residuals
- Chain of multiple copies of a residual auto-encoder F_t : $F_t(r_{t-1}) = D_t \left(B(E_t(r_{t-1})) \right)$

Where r_0 is the original patch

- Loss function:
 - L2 norm
 - W.r.t residual, for non-LSTM architectures
 - W.r.t. original patch, for LSTM architectures

Binarization

- Fixed number of output bits n
- Two steps:
 - Generate n outputs in [-1, 1] using a fully connected layer with tanh activation
 - Thresholds the outputs
- Total number of bits:
 - Number of outputs n times the number of repetitions of the residual autoencoder structure

Feed-forward fully connected residual encoder

Fully connected LSTM residual encoder

Feed-forward convolutional/deconvolutional residual encoder

Training & results

- 32x32 patches (216 millions)
- No perceptual loss function in the training
- Evaluation using SSIM
- Best architectures: LSTM and convolutional LSTM

Bits Per Pixel

Original (32×32)

JPEG compressed images

WebP compressed images

		From lef	t to right	[bpp]
JPEG	0.641	0.875	1.117	1.375
WebP	0.789	0.914	1.148	1.398
LSTM	0.625	0.875	1.125	1.375
(De)Convolutional LSTM	0.625	0.875	1.125	1.375

Compressed images with LSTM architecture

Compressed images with conv/deconv LSTM architecture

Extensions

- Application to full-resolution images (Todorici et al. (2017), Fullresolution image compression with RNN)
 - Long-term dependencies between patches
 - Binary recurrent network to predict symbol probabilities for an arithmetic encoder

Extensions

Extensions

- Spatially adaptive image compression using a tiled deep network (Minnen et al., ICIP (2017))
 - Spatial prediction (similar to inpainting of Pathak et al., CVPR 2016)
 - Residual coding

Spatial prediction

- Strided (downsampled) convolution/deconvolution architecture
- Similar to a denoising auto-encoder (used here for inpanting)

Coding of prediction residual

- Based on a recurrent autoencoder as in Todorici et al. 2016
- Spatially adaptive bit allocation by stopping the iterations when a PSNR criterion for the tile is met

Spatial bitrate adaptation

• Allocation maps:

RD results

Results of subjective experiments are also reported:

Visual differences w.r.t. JPEG significant only for low bitrates

A revolution in image/video compression?

- CVPR 2018 challenge on learned image compression <u>http://www.compression.cc/</u>
- Results sometimes impressive
- But *very* dependent on the training/test conditions
- Conventional coding:
 - Based on simple signal models (generally used as an ensemble)
 - Innovation has been mainly incremental for the past 20+ years
- Can DL revolutionize image/video compression?